TPO as an indicator of lymph node metastasis and recurrence in papillary thyroid carcinoma
Vaccarella, S. et al. Global thyroid cancer epidemic? The growing impact of overdiagnosis. N. English. J Med. 375614-617 (2016).
Zhang, L. et al. New drug candidate targeting the 4A1 orphan nuclear receptor for medullary thyroid cancer therapy. Molecules (Basel, Switzerland) 23565 (2018).
Niederer-Wüst, S. et al. Impact of clinical risk scores and BRAF V600E mutation status on outcome in papillary thyroid cancer. Surgery 157119-125 (2015).
Kim, J., Gosnell, J. & Roman, S. Geographical influences in the global rise of thyroid cancer. Wet. Rev. Endocrinol. 1617–29 (2020).
Cabanillas, M., McFadden, D. & Durante, C. Thyroid cancer. Lancet (London, England). 3882783-2795 (2016).
Jin, J . et al. Preoperative platelet width-to-platelet ratio combined with serum thyroglobulin may be objective and popular indicators in predicting papillary thyroid carcinoma. J Clin. Laboratory. Anal. 36e24443 (2022).
Carneiro, R., Carneiro, B., Agulnik, M., Kopp, P. & Giles, F. Targeted therapies in advanced differentiated thyroid cancer. Cancer treats. Rev. 41690-698 (2015).
Choi, J., Bae, J., Lim, D., Jung, S. & Jung, C. Atypical histiocytoid cells and multinucleated giant cells in fine needle aspiration cytology of the thyroid gland predict lymph node metastasis of papillary thyroid carcinoma. Cancers 11816 (2019).
Abdullah, M. et al. Papillary thyroid cancer: genetic alterations and molecular biomarker studies. Int. J Med. Science. 16450-460 (2019).
Kimura, S. et al. Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping and identification of two alternately spliced mRNAs. Proc. Natl. Acad. Science. USA 845555-5559 (1987).
Liu, Y. et al. Bioinformatics analysis to screen key genes in papillary thyroid carcinoma. Oncol. Lit. 19195–204 (2020).
Kure, S., Wada, R. & Naito, Z. Relationship between genetic alterations and clinicopathological features of papillary thyroid carcinoma. Med. mole. morphol. 52181–186 (2019).
Liu, Z. et al. Significance of CK19, TPO and HBME-1 expression for the diagnosis of papillary thyroid carcinoma. Int. J Clin. Exp. Med. 84369-4374 (2015).
Wilkinson, L. ggplot2 : elegant graphics for data analysis by WICKHAM, H.. Biometrics 67678-679 (2011).
van Mering, C. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31258-261 (2003).
Yu, G., Wang, LG, Han, Y. & He, QY Clusterprofiler: An R package for comparing biological themes across gene clusters. Omics J. Integr. Biol. 16284-287 (2012).
Binda, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveals the immune landscape in human cancer. Immunity 39782-795 (2013).
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene sequence variation analysis for microarray and RNA-seq data. BMC Bioinform. 147 (2013).
Kim, K. et al. Preoperative prediction of central lymph node metastases in thyroid papillary microcarcinoma using clinicopathological and ultrasound features. World J. Surg. 37385-391 (2013).
Sancho, J., Lennard, T., Paunovic, I., Triponez, F. & Sitges-Serra, A. Prophylactic central neck dissection in papillary thyroid cancer: a consensus report of the European Society of Endocrine Surgery (ESES). Langenbeck’s bow. Surg. 399155-163 (2014).
Khokhar, M. et al. High-resolution preoperative ultrasound for the assessment of central compartment malignant lymph nodes in papillary thyroid cancer. Thyroid 251351-1354 (2015).
Dong, W. et al. Time-varying pattern of mortality and recurrence of papillary thyroid cancer: lessons from a long-term follow-up. Thyroid 29802-808 (2019).
Giordano, D. et al. Complications of central neck dissection in patients with papillary thyroid carcinoma: results of a study of 1087 patients and literature review. Thyroid 22911-917 (2012).
de Micco, C., Savchenko, V., Giorgi, R., Sebag, F. & Henry, J. Usefulness of malignancy markers in fine needle aspiration cytology of thyroid nodules: comparison of Hector Battifora mesothelial antigen-1, thyroid peroxidase, and dipeptidyl aminopeptidase IV. br. J. Cancer 98818-823 (2008).
Maruta, J. et al. Value of thyroid-specific peroxidase and Ki-67 stains in preoperative cytology for thyroid follicular tumors. diagnosis Cytopathol. 43202-209 (2015).
Li, Z. & Zhang, H. Reprogramming glucose, fatty acid and amino acid metabolism for cancer progression. Cell. mole. Life Sciences. CMLS. 73377-392 (2016).
Porporato, P., Payen, V., Baselet, B. & Sonveaux, P. Metabolic changes associated with tumor metastasis, part 2: mitochondria, lipid and amino acid metabolism. Cell. mole. Life Sciences. CMLS. 731349-1363 (2016).
Peng, H., Wang, Y. & Luo, W. Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene 396747-6756 (2020).
Nguyen, T., Nguyen, H. & Le, D. Unveiling prognostic biomarkers of tyrosine metabolism reprogramming in liver cancer by platform-independent gene expression analyses. PLOS ONE 15e0229276 (2020).
Wiggins, T., Kumar, S., Markar, S., Antonowicz, S. & Hanna, G. Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: a systematic review. Cancer Epidemiol. Biomark. Previous 2432-38 (2015).
Xi, Z. et al. Immune cell confrontation in the microenvironment of papillary thyroid carcinoma. Front side. Endocrinol. 11570604 (2020).
Bergdorf, K. et al. Papillary thyroid carcinoma behavior: clues in the tumor microenvironment. Endocr. Relationship Cancer 26601-614 (2019).